
Telecommun Syst (2016) 63:99–110
DOI 10.1007/s11235-015-9976-x

Realistic framework for resource allocation in macro–femtocell
networks based on genetic algorithm

Hanaa Marshoud · Hadi Otrok · Hassan Barada ·
Rebeca Estrada · Abdallah Jarray · Zbigniew Dziong

Published online: 17 March 2015
© Springer Science+Business Media New York 2015

Abstract In this paper,we consider the problemof resource
allocation in non-dense macrocell–femtocell networks. We
build a comprehensive realistic framework that overcomes
the limitations of previous research work such as (1)
resources underutilization due to the equal transmitted power
per subcarrier in macrocell, (2) lack of femtocells selection
mechanism that grant access to public users without depriv-
ing their own subscribers. Orthogonal Frequency Division
Multiple Access is a promising candidate for efficient spec-
trumsharing techniques as it eliminates intracell interference.
We propose a base station selection and resource allocation
model for two-tier networks that is able to: (i) maximize the
overall network throughput, (ii) find the appropriate serv-
ing base station for each mobile user, and (iii) jointly assign
bandwidth and power to each user. The proposed approach is
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based on Genetic Algorithm (GA) technique since this tech-
nique allows to find a near optimal solution and to speed up
the optimization process. Simulations are conducted under
realistic scenarios where user mobility and resource reser-
vation are taken into account. The performance of the pro-
posed approach is comparedwith aMixed IntegerLinear Pro-
gramming (MILP) approach and the Weigthed Water Filling
(WWF) algorithm.

Keywords Femtocell · Macrocell · Resource allocation ·
Optimization theories · Linear programming · Genetic
algorithm

1 Introduction

Femtocells (FCs) are low-cost, low-power base stations
deployed in homes or business enterprises. They can pro-
vide high signal-to-noise ratio (SNR) in a small coverage
area to improve the quality of service (QoS) and data rates.

Femtocell deployment is expected to witness continuous
growth in coming years. Despite all the advantages that this
technology brings, there are still some challenges that need to
be addressed such as interferencemanagement between fem-
tocells and the overlaying macrocell (MC) and the resources
allocation among the two tiers.

Femtocell access control mechanisms are classified as
closed access or closed subscriber group (CSG) and open
access (OA). In closed access, only a limited number of users
known as subscribers is allowed to access the FC, while any
user is allowed to connect to the FC in the open access mode.
CSG ismore demanded in home environments since it allows
the subscriber to get full benefit from his FC, however this
access mode has the drawbacks of limiting network capac-
ity and increasing interference. Open access offloads traffic
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from MC and therefore network capacity is enhanced but it
requires more communication between MC and FCs [32].
A hybrid access approach can find a trade-off between both
access modes, since in this case the FC can share a part of its
resources with public users without depriving its own sub-
scribers.

Since the increasing demand for higher data rates is the
key driver for femtocell technology, orthogonal frequency-
division multiple access (OFDMA) is a good candidate for
4G femtocell networks [20]. In a non-dense two-tier network,
subchannels assignment can be done by splitting the available
spectrum into two parts (i.e. spectrum partitioning). In this
way, different subchannels are used by the two tiers avoiding
the interference.

Bandwidth allocation has been widely studied in liter-
ature. In [30], the main concern is the assignment of the
licensed spectrum among both tiers and the majority of this
work assumes fixed power transmission for all connections in
the macrocell. In [12], frequency assignment and power con-
trol is performed in femtocells to minimize coverage holes
at the macrocell edge. The work in [2] has shown the effect
of changing the maximum transmitted power per connection
basis in a multi-macrocell framework. A joint power and
bandwidth assignment based on the Hungarian algorithm
is carried out in [6] to minimize power consumption and
improve QoS. Linear programming was used in [13] to solve
the resource allocation problem together with base station
selection. The main drawbacks of this approach are the high
running time required to find the optimal solution and lack
of the mobility incorporation.

The limitations of previous approaches can be summa-
rized as follows:

– High complexity and long computation time makes the
solution unpractical for real implementations.

– Lack of management techniques that consider user mobil-
ity.

– Lack of real traffic demand models that consider time-
varying demand and time reservation.

In this paper, we propose a genetic algorithm (GA) based
solution that performs base station selection together with
resource allocation. The GA is a heuristic technique that
generates solutions inspired by natural evolution. GA is a
good candidate to bias the search toward a satisfying near-
optimal solution while having the advantage of speeding up
the optimization process [26]. The proposed model aims to
maximize system throughput through the selection of the
best serving BS and resources, i.e. bandwidth and power,
for each user. This is done based on a spectrum partitioning
approach, where each tier allocates a different part of the
available bandwidth, which means that the cross-tier inter-
ference is avoided.

For comparison purposes, we implement the linear pro-
gramming approach [13] that obtains the optimal solution
and a heuristic approachusing amodifiedversion ofweighted
water filling (WWF) algorithm proposed in [16]. Simulations
are conducted and the three models are tested under realis-
tic conditions where user mobility and time reservation are
considered.

In summary, our contribution is a GA-based model that is
able to:

– Assign power and bandwidth based on spectrum partition-
ing.

– Select the set of users that will be connected to each BS.
– Maximize the throughput regarding users’ demands and
QoS requirements.

– Consider reservation of time slots in established calls.
– Reduce the impact of handover due to mobility.
– Have a near-optimal solution within short time compared
to linear programming.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the problem statement. Proposed resource
allocation model is described in Sect. 3. The implementation
of GA and the benchmark models is described in Sect. 4.
Section 5 illustrates simulation results. Section 6 presents
related work. Finally, the conclusions are given in Sect. 7.

2 Problem statement

Dense femtocell deployment is expected in the coming years.
This technology improves indoor coverage and provide high
data rates inside homes and enterprises, but it should also be
able to offload traffic from the expensive overlaying macro-
cell into the low cost public internet backhaul. To achieve this
goal, a hybrid access mode should be applied for femtocells.
It was shown in [17] that a hybrid access mode can improve
the system capacity and QoS without causing unnecessary
signaling overhead.

Let’s assume a network with one macrocell and one fem-
tocell as illustrated in Fig. 1, mobile user MU1 is a femtocell
subscriber and is located inside the femtocell coverage, so
he is served by his own femtocell, while MU2 is a public
user that is passing near the femtocell. There are two possi-
ble ways to connect him to the mobile core network: (1) by
femtocell, assigning low power, or (2) by macrocell, assign-
ing high power. These two possible connections are indicated
in Fig. 1 by L1 and L2 respectively. The L1 link conditions
dependon themodulation technique required in theFC,while
the L2 link conditions depend on themodulation technique in
macrocell zone. For example, if FC uses 16-QAM as mod-
ulation technique and the macrocell zone Z3 uses QPSK,
the better option for user MU2 is to be served by the fem-
tocell instead of macrocell since it requires less power and
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Fig. 1 Macrocell–Femtocell network

less bandwidth. It requires less bandwidth since the number
of bits required for the modulation technique is higher in
FC. In general, link conditions between public users and BS
(i.e. macrocell and femtocells) should be investigated before
choosing the serving base station.

Once base station selection is carried out, the amount of
resources to be granted to the user should be determined.
Bandwidth allocation [3,10,11] as well as power control
[6,7,12] have been widely studied in literature. The main
shortcoming of previous approaches is the lack of a base sta-
tion selectionmechanism that determines the optimal serving
station for each user in order to improve two-tier network per-
formance. To the best of our knowledge, resource allocation
has not been evaluated under more practical circumstances
such as user mobility and varying traffic conditions. In our
approach, we support user mobility to offer a seamless voice
and data service to users. The proposed model includes a
mechanism to reduce the ping-pong effectwhen the handover
is performed. Time-varying user traffic is also addressed
since all users are not connected to the network at the same
time and they do not withdraw from it after equal periods.

3 Problem formulation

In this section, we describe our proposed base station selec-
tion and resource allocation model and its implementation.

We investigate the resource allocation problem in non-
dense femtocells deployment where spectrum partitioning is
applied by means of orthogonal subcarriers allocation. We
assume that a FC cluster is deployed under the coverage of
an overlaying macrocell. This makes the resource allocation
(RA) problemmore clear, since a user of one femtocell could
be connected to another femtocell or to the macrocell if he
changes his location. We assume that the coverage area of
macrocell is divided into four zones and each zone has a
different modulation scheme and SNR target [28] as shown
in Table 1. The parameters used in our model are described
in Table 2.

Table 1 Zones assumptions

Zone Modulation scheme Bits/symbol SNR target

Z1 64-QAM 6 22.4

Z2 16-QAM 4 16.24

Z3 QPSK 2 9.4

Z4 BPSK 1 6

Table 2 Model parameters

Name Description

Btot Total available bandwidth

Ptot Maximum Transmitted Power

Rm MC’s Radius

R f FC’s Radius

γm Outdoor attenuation factor

γ f Indoor attenuation factor

Cmax
z Maximum capacity per zone

Lmod
m,z Bits per symbol per MC’s zone

Lmod
f Bits per symbol in FCs

N0 Average noise power

N Number of mobile users

N f Maximum number of users in FC

di Distance from the user to the BS

Si Demand of mobile user (Mb/sec)

3.1 Objective function

Our objective is maximization of the network throughput,
which is calculated using Shannon’s Law and given by Eq.
(1).

T =
∑

k∈{m,F}

∑

i∈{N }
xki bi log2(1 + SN Ri ) (1)

where xki is a binary parameter to represent that the base
station k serves user i . Thus, xki is set to 1 if the user i is being
served by the base station k, and it is set to 0 otherwise. The
variablebi represents the bandwidth assigned to the user i and
SN Ri is the signal-to-noise ratio of the connection between
base station k and user i and is calculated as:

SN Ri = Pi
/
(PLi × N0) (2)

where Pi is the variable that represents the power assigned
to user i , PL is the path loss and N0 is the average noise
in the system. Path loss is calculated using non-line-of-sight
(NLOS) propagation model in [1] and it is given by Eq. (3).

PLi (dB) =
{
10log10(d

αm
im ) + 149, for MC users

10log10(d
α f
i f ) + 37, for FC users

(3)
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where dim is the distance from the user i to the MC and is
given in kilometers and di f is the distance from the user i to
the FC k and is given in meters.

In order to maximize the Eq. (1), we need to optimally
utilize both power and bandwidth.

3.2 Model constraints

For our objective function presented in (1), we have the fol-
lowing constraints given in Eqs. (4–7) :

– Total available bandwidth: the sum of the assigned
bandwidth should be less than or equal to the total avail-
able bandwidth Btot .

N∑

i=1

bi ≤ Btot. (4)

– Maximum transmitted power: the sum of power
assigned to users should be less than or equal to max-
imin transmitted power allowed.

N∑

i=1

Pi ≤ Ptot. (5)

– Shannon’s law capacity in MC: the number of bits per
symbol should be greater than target spectral efficiency
in zone z.

log2(1 + SN Ri ) ≥ Lmod
m,z (6)

– Shannon’s law capacity in FC: the number of bits per
symbol should be greater than target spectral efficiency
of the femtocell f .

log2(1 + SN Ri ) ≥ Lmod
f (7)

where SN Ri is the signal-to-noise ratio of the transmis-
sion between user i and the serving base station, i.e. the
macrocell or near femtocell.

3.3 User mobility and time reservation

A mobile user may be moving while engaged in a call, this
movement could imply that the user leaves the coverage area
of his current serving BS and be handed over to another BS.
In addition, the user movements might require an adjustment
of the transmitted power to meet the SNR target. Our real-
istic framework considers the user mobility using the ran-
dom walk as the mobility model [4]. In this mobility model,
a mobile user changes his location by randomly choosing

a direction between 0 and 2Π and a speed between 0 and
10 m/s.

We also consider the time reservation. Since users do not
initiate their calls together and do not hold the calls for the
same time period, our model allows users to join the network
at different times and to end their calls after different time
slots.

4 Resource allocation algorithms

In this section, we present the implementation of the GA
based resource allocation model described in Sect. 3. For the
comparison purposes, we implement two benchmark models

4.1 Genetic algorithm based model

Genetic algorithm is a heuristic technique premised on the
evolutionary computing. This technique has been proven to
reach a satisfying near-optimal solution for complex mod-
els where reaching the global optimum is complex and time
consuming. GA represents the solutions as individuals or
chromosomes and a group of individuals form a population.
A fitness evaluation is done based on an objective func-
tion to choose parents for reproduction, where individuals
with higher fitness have a bigger chance to survive and the
next generation inherits even better characteristics. Cross-
over between the selected parents is done and then mutation
is performed on the new generation in order to widen the
search space and escape from local optima [27]. GA can be
applied to any problemwhere the solution can be represented
as a string and there is a way to evaluate the fitness of the
solution [9].

The fitness function is the objective function given by (1).
After the first population is randomly generated, the fitness
evaluation is performed. Parents selection for reproduction
is done using roulette wheel in such way that solutions with
higher fitness have a bigger chance for survival. Double point
cross-over is performed to produce the new solutions. Then,
a mutation rate of 1% is applied on the new offspring before
including them in the population. The fitness of solutions
notably improves as this process is repeated. A termination
method stops the evolution when the fitness is estimated to
converge. Two filters of different lengths are used to smooth
the best fitness across the generations. When the best fitness
from the long filter is less than 5% away from the best fitness
from the short filter, the evolution terminates.

4.1.1 BS selection

Femtocells are assumed to allow some public users to be
connected to them together with own subscribers. A deci-
sion should be made for each user to determine whether he
gets access to the core network via MC or a nearby FC. In
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Table 3 System parameters

Name Description Value

Btot Total available bandwidth 200 MHz

Ptot Total available power 56 dBm

Rm MC’s Radius 500 m

R f FC’s Radius 20 m

γm Outdoor attenuation factor 3.7

γ f Indoor attenuation factor 3

Cmax
z Maximum capacity per zone (10, 7, 5, 1)

Lmod
m,z Bits per symbol per MC’s zone (6,4,2,1)

Lmod
f Bits per symbol in FCs (6,4,2,1)

N0 Average noise in the system 105 dBm

N Number of mobile users 100

N f Maximum number of users in FC 5

order to guarantee the FC subscriber priority, a public user
can be served by a FC if he is located inside FC’s coverage as
long as his connection does not deprive subscriber transmis-
sions. In this way, MC traffic can be offloaded and allow a
higher number of users to be served. Therefore, the following
constraints should be considered during BS selection stage in
order to determine the output parameter that associates each
user to a BS, xki .

– User i can be connected only to one BS.
– Number of users in each FC should be less than or equal
to number of allowed users, N f .

4.1.2 Dual bandwidth and power assignment

Dual bandwidth and power assignment is performed to dis-
tribute the available resources among users with the purpose
of maximizing the overall system throughput. A portion of
the available bandwidth is assigned to each user according
to his demand and location. In macro tier, the bandwidth
assigned to each user should be less than or equal tominimum
value between his demand Si , and the maximum allowed
capacity per zone, Cmax

z , divided by the number of bits per
symbol required for the modulation scheme in the MC zone.
In femto tier, bandwidth assigned to each user should be less
than or equal to his demand divided by the number of bits
per symbol required for the FC modulation scheme. Eqs. (8)
and (9) give the upper bound for bandwidth to be allocated
to a user in macro tier and femto tier respectively.

bmax
i = min(Si ,Cmax

z )

Lmod
m,z

(8)

bmax
i = Si

/
Lmod

f (9)

where Lmod
m,z and Lmod

f are the number of bits per symbol per
MC’s zone z and in FCs respectively as shown in Table 3.

After that, Downlink (DL) transmitted power assignment is
done such that the SNR target values presented in Table 1 are
met.

The GA based resource allocation model is presented in
Algorithm 1.

Input: At each time interval the MBS collects
S: the demand of each user.
d: the location of each user.
Lmod

f : modulation scheme in the femtocell.
Output: Bandwidth, power and serving base station for each

user.
while new users join the network do

1 . Find the serving base station for each user based on
link-rate calculations.
2 .Randomly generate the first population. repeat

III . Calculate the fitness of each individual using the
pre-defined objective function and save the best solution.
IV . Apply the selection process on the parents to select
parents of the next offspring.
V . Produce a new generation by applying the cross-over
operator on selected parents.
VI . Apply mutation to enrich the new generation with
new solutions.
VII . Calculate the fitness of the new offspring and update
the best solution if any.

until stopping conditions are met;
end

Algorithm 1: GA-based model

4.2 MILP based model

A mixed integer linear programming model was proposed in
[13] to perform base station selection together with resource
allocation. The proposed model aims to maximize the entire
network throughput, which means optimizing the sum of
achievable data rates according to Shannon’s capacity law.
Although MILP method can obtain the optimal solution,
it has the drawback of time-consuming calculations which
makes it unpractical for real implementations. In this work,
we implement their MILP model to consider a realistic sce-
nario with user mobility incorporation and the time varying
demand.

4.3 Weighted water filling model

In [16], the resource allocation model for a macrocell–
femtocells network is proposed using the weighted water
filling algorithm. In this approach, bandwidth allocation is
performed based on user demands. The analyzed scenario
consists of a single FC located in the coverage area of one
MC. The base station selection is pre-fixed and depends on
link conditions. The drawback of this approach is that if the
number of public users attempting to join the FC is greater
than its capacity, it might result in public users being blocked
and there is no procedure defined to redirect the blocked users
to the MC.
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This approach introduces the concept of weights to pri-
oritize the subscriber transmissions over public users inside
their FC.After BS selection is performed, themacrocell algo-
rithm runs taking into account each FC as a macro user with
demand andweight equal to the sum of demands andweights
of all the users associated to it. Then, the FC algorithms run
independently using as available bandwidth the value allo-
cated from the MC algorithm. In each BS, users are sorted
according to their weighted demand. The user weighted
demand is equal to his demand divided by his weight. Then,
bandwidth allocation is done round by round until users
demands are satisfied or the total available bandwidth is
exhausted.

The modifications included on this algorithm are:

1. We consider several femtocells located under the cov-
erage of the macrocell. Thus, BS selection is done by
calculating the link rate from each user to each BS
and the base station with highest link rate serves the
user.

2. Power assignment is calculated based on the SNR target.

Our modified version of the WWF algorithm is presented
in Algorithm 2.

Input:
S: the demand of each user.
d: the distance between user and MBS.
d f : distance between FBS and MBS.
Lmod

f : modulation scheme in the femtocell.
Output: Bandwidth, power and serving base station for each

user.
/* MC’s Algorithm */
while new users join the network do the MC

1 . Find the serving base station for each user based on
link-rate calculations.
2 . Sort macro users according to their weighted demand
Solve:
3 . Calculate the bandwidth to be assigned for each user
i ∈ M + F .

bi = min

(
brequiredi −bk−1

i
wm
i

,
B−∑i−1

k=1
∑M+F

j=k b j
∑M+F

j=i wm
j

)

4 . Calculate the power to be assigned for each user i ∈ N f
according to SNR value

end
/* FC’s Algorithm */
while new users join the network do the FC

1 . At each time interval t the FBS do:
2 . Sort femto users according to their weighted demand
Solve:
3 . Calculate the bandwidth to be assigned for each user
i ∈ N f .

bi = min

(
brequiredi −bk−1

i
wm
i

,
B−∑i−1

k=1
∑N f

j=k b j
∑N f

j=i wm
j

)

4 . Calculate the power to be assigned for each user i ∈ N f
according to SNR value

end
Algorithm 2: WWF algorithm

5 Simulation results

In this section we present the network configuration and
simulation results using the three different approaches: GA,
MILP and WWF. Simulation results were conducted using:
(1) Visual C++ Studio 8.0 and (2) IBM ILOG Cplex 12.1:
Concert Technology Environment.

5.1 Network configuration

We used the same physical layer assumptions as in [28],
where MC coverage area is decomposed into 4 zones which
are assumed to be concentric circles. Each zone uses dif-
ferent modulation technique and requires different SNR
target as shown in Table 1. This is very helpful in the
study of two-tier MC-FC networks as the spectral efficiency
decreases when users get further from the BS. SNR target
value depends on the modulation scheme and represents the
minimum SNR that the user should receive to avoid data
losses. Five femtocells are located in the macrocell cover-
age area forming a cluster. The number of bits per symbol
required for the FC modulation scheme should be higher
than the number of bits per symbol required for the mod-
ulation scheme in the MC zone where the user is located.
Thus, the FC transmission link requires less bandwidth than
the MC transmission link. The number of bits per symbol
in the femtocells are randomly generated with values of 6,
4 or 2 with equal probability, which corresponds to have
different modulation techniques (64-QAM, 16-QAM and 4-
QPSK respectively). FCs are not located in Z1 since the
user can be connected to the near MC and achieve higher
data rate. Table 3 shows the system parameters used in the
simulations.

Simulations are conducted periodically for 20 consecu-
tive time periods where each time period has the duration
of 5 s. Simulation starts with 50 mobile users initiating their
calls in the macrocell–femtocells network. User locations
are randomly generated such that 50% of them are in the FC
vicinity and 20% are femtocell subscribers. The percentage
of users leaving the network at any time interval is 5–20%,
while percentage of arriving users is 5–25%. Every 5s inter-
val, the control module in the macrocell updates its data by
collecting statistics from the mobile users, then the resource
allocation problem is carried out to assign power, bandwidth
and serving base station to the new users.

5.2 Performance analysis

In the following, we show the performance of the three RA
models: MILP, GA and WWF used to solve the resource
allocation problem described in Sect. 3.
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Bandwidth usage is the ratio between the bandwidth allo-
cated to macro and femto users and the total available band-
width and it is given by Eq. (10).

BWusage =
∑N

i=1 bi
Btot

(10)

Power usage indicates the sum of assigned power for DL
transmission from the MC to macro users, which is given by
Eq. (11). Power usage in FCs is not considered due to low
power levels.

Pusage(dBm) = 10log10

(
(
∑N

i=1 x
m
i Pi )

1mW

)
(11)

Figures 2 and 3 shows bandwidth and power usage for the
three algorithms. Bandwidth allocation is performed tomaxi-
mize the objective function defined inEq. 1. The performance
of the GA algorithm is very close to theMILP algorithm. The
WWF algorithm is able to utilize a large portion of the avail-
able bandwidth, which is due to the fair resource allocation
criteria described in Sect. 4.3.

The MILP model utilizes more transmitted power than
the GA model by assigning the optimal power for each DL
transmission. In the GA model, power was assigned accord-
ing to SNR calculations as shown in Eq. (2). Thus, the power
assigned for a DL transmission should be high enough to
reach the target SNR of the MC zone, which is considered
by means of Shannon’s law in Eqs. 6 and 7. While the power
allocation in WWF algorithm is also based on SNR calcula-
tion, the power consumption is different from the GA algo-
rithm case. This is due to the different BS selection procedure
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Fig. 3 Power usage

in both algorithms. In WWF, resources are allocated to users
after sorting them in a descending-demand order, thus some
users may be connected to a far BS because the near BSs are
already occupied by users whowere handled first. Therefore,
the WWF algorithm gives the largest power consumption.

5.2.1 System throughput and user satisfaction

User satisfaction is defined as the ratio between the sum of
assigned user data rates and the sum of demands and it is
given in Eq. (12).

D =

∑
k∈{m,F}

∑
i∈{N }

xki bi L
mod
k,z

∑N
i=1 Si

(12)

The system throughput is calculated as the sum of Shan-
non’s link capacities given by Eq. (1) in Sect. 3. Shannon’s
Capacity gives themaximum data rate over a communication
channel.

As seen fromFigs. 4 and 5,MILP achieves the highest sys-
tem throughput and user satisfaction whereas GA performs
better thanWWFalgorithm. Theweak performance ofWWF
is due to the BS selection criteria, mentioned previously,
causing that some users may be connected to a non-optimal
base station where the base station that have the highest link
rate from the user is fully-loaded.

Incremental Traffic Scenario: Under incremental traf-
fic scenario, simulations start with 20 users in the network.
Then the number of users continues to increase in each inter-
val. Bandwidth usage and the achievable system throughput
versus number of users for such scenario are shown in Figs.
6 and 7. It can be seen that both MILP and GA maintain
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high system throughput despite the continuous increase in
the number of users being served. In case of WWF, the sys-
tem throughput drops rapidly although it utilizes a large part
of the available spectrum.

5.2.2 Mobility analysis

Figure 8 shows the number of executed handovers. Frequent
handovers have a bad impact on the system performance and
may lead to an increase in the call-drop probability [25].
As we can see from Fig. 8, the number of handovers in the
GA and WWF models is higher than in the MILP model. To
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reduce the number of unnecessary handovers, we propose
a mechanism to avoid the so-called ping-pong effect. Ping-
pong effect is undesirable and occurs when a mobile station
is handed over to an adjacent BS and then returns back to the
original BS in short time [29]. Since the FC coverage area is
small, it is very likely that too many handovers take place for
a mobile user that is moving in the proximity of neighbor-
ing FCs. The elimination of the ping-pong effect is done by
saving a record of the BSs that the mobile station joins in a
particular call. If the mobile station is handed over from FC
A to FC B and then attempts to join A again, the handover
is not performed and the mobile station is directly connected
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Fig. 8 Reduction of unnecessary handovers

to the MC. In this way, a better connection is guaranteed by
avoiding frequent handovers that could cause a call drop. Fig-
ure 8 shows the number of executed handovers for both GA
andWWFmodels, where GA–PP andWWF–PP indicate
the ping-pong free GA and WWF algorithms respectively.

5.3 Complexity

Table 4 presents the running time for the three algorithms. It
is worth to notice that the MILP consumes much higher time
for simulations [13]. This is the main reason to find alterna-
tive optimization techniques to solve the proposed resource
allocation problem.As can be seen from the table,when num-
ber of users changes from 40 to 50, the MILP running time
was almost doubled, while the GA maintains the lowest cal-
culation time. This is due to the stopping criteria that exits the
search when a semi-steady solution is produced. Simulation
results show that theGA succeeds to reach near-optimal solu-
tions in a very short time which makes it a viable candidate
for practical implementations. This is because the GA based
approach solves the RA problem for new users each period of
time taking into account time reservation, while MILP and
WWF needs to work on the whole network users at once.
Moreover, MILP looks at all the possible solutions, which
results in high computational complexity. The convergence
of the GA is shown in Fig. 9.

6 Related work

In this Section, the prior work in the field is presented in three
parts: RA in two-tier networks, mobilitymanagement in two-

Table 4 Running time (s)

No. of users MILP WWF GA

10 0.04 0.02 0.02

20 0.14 0.06 0.05

30 0.42 0.09 0.07

40 1.06 0.12 0.09

50 2.07 0.16 0.11
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Fig. 9 Convergence of GA

tier networks and the implementation of heuristic techniques
in solving RA problems.

6.1 Resource allocation in OFDMA two-tier networks

Most of the research work using OFDMA technology
assumes equal distribution of transmitted power among all
the subcarriers in macrocell. Thus, RA problem is reduced to
allocate subcarriers with equal power in macrocell that max-
imizes network capacity under scenario with sparse or dense
deployment of femtocells. In sparse deployment, subcarrier
allocation uses dedicated subcarriers in each tier as in [10].
Conversely, subcarriers must be shared between MC and
FCs in dense deployment and interferencemanagement tech-
niques must be implemented to enhance network throughput
such as adaptive or combined spectrum usage and power
control [8,19].

In [10], a spectrum allocation that separates MC and
FCs frequency channels in a hierarchical cell arrangement
is proven to have a higher data rate satisfaction rather than
the shared spectrum, in addition to avoiding the co-channel
interference resulting from spectrum sharing.
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A distributed resource assignment scheme is proposed in
[11]. In this scheme, MC utilizes the entire available band-
width while FCs can access only a randomly chosen limited
portion of the bandwidth to reduce the number of femtocells
interfering withMC per time interval. The limitation appears
in dense deployments where the spectrum portion assigned
to FCs may not be adequate to fulfill their users’ needs.

Hybrid spectrum usage is used in [3], where each fem-
tocell is allowed to choose its spectrum usage mode, either
shared or dedicated according to its location and traffic. The
proposedmethod aims to increase the area spectral efficiency
which is defined as the achievable throughput per unit area.

In [7], power control is carried out in femtocell tier through
the determination of themaximum allowed connection trans-
mitted power in FCs in such a way that they do not degrade
the service given tomacro users operating in same channel. In
[12], power control is carried out in FCs to minimize cover-
age holes at themacrocell edge. A joint power and bandwidth
assignment based on the Hungarian algorithm is carried out
in [6] to minimize power consumption and improve QOS
provided for users.

In [22], we have proposed a joint power and bandwidth
resource allocation (RA) together with base station selection
in a hybrid-access two-tier network with spectrum partition-
ing approach. In [21], we have considered a dense deploy-
ment of femtocells where full spectrum sharing approach is
needed. In such a scenario, severe interference can be gener-
ated for femto andmacro users. Thus, interferencemitigation
techniques are required to ensure good system performance.

6.2 Mobility management in two-tier networks

Mobility of femtocell users is considered in [5], where
orthogonal sub-bands are assigned to adjacent FCs to elim-
inate inter-cell interference and enhance the system perfor-
mance. Probabilisticmobility prediction is carried out in [15]
to decide whether a FC should accept an arriving new call
or handover. This is done in order to optimize bandwidth
utilization and reduce call blocking probability. In [31], han-
dover parameters optimization method is proposed based on
Ant Colony Algorithm. Simulations shows that the proposed
scheme outperforms the fixed parameters strategy.

6.3 Implementation of heuristic techniques in RA models

Heuristic techniques have been widely proposed for solving
resource allocation problems in mobile networks. GA has
been used in femtocells network to perform power control
such as the distributed approach in [14] to minimize cover-
age holes and balance users’ distribution among FCs or the
centralized approach in [23] to increase coverage and reduce
femto-femto interference. In [24], frequency allocation and
power control in femtocells network is carried out using both

centralized and distributed GA in order to maximize the net-
work capacity. Thework in [33] showed that the genetic algo-
rithm performedwell at satisfyingQoS requirements of users
in an OFDMA wireless communication system. Joint power
control and channel allocation is proposed in [18] where par-
ticle swarm optimization is used to maximize the minimal
throughput of the femtocells.

Main concern of prior work was the resources allocation
among both tiers such that interference effects are minimized
or avoided but it did not specify a mechanism for base sta-
tion selection for each user. In addition, it did not specify
the amount of access that should be granted to public users
in FCs. Moreover, noise effects has not been evaluated in
spectrum partitioning approaches where noise is the only
capacity-limiting parameter that affects SNR. Genetic Algo-
rithm was proven to be a good candidate to solve resource
allocation problems and it has the advantage of speeding up
the optimization process.

7 Conclusion

A spectrum partitioning based resource allocation model
was introduced for non-dense femtocell deployments. User
mobility and time reservation were considered in a network
with one macrocell and a cluster of five underlaid femtocells.
The proposed model was able to (1) find the best serving
base station for each user, and (2) allocate power and band-
width resources among the users. Simulations showed that
the GA was able to provide very good results that are close
to the optimal results, while GA reduces the calculation time
which is a major requirement in mobile communications. On
the other hand, GA performed better that the modifiedWWF
algorithm in terms of resources utilization, system through-
put and user satisfaction. Therefore, the proposed approach is
a good candidate to solve the resource optimization problem
for macro–femtocell networks.
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